Tuesday, August 16, 2011

Searching for spin liquids: Much-sought exotic quantum state of matter can exist

Diagram depicting anti-ferromagnetic order (upper) compared to a spin liquid phase (lower). In an anti-ferromagnet, the spins are anti-aligned. A spin liquid has no order and the spins can be viewed as bobbing about like water molecules in liquid water. (Credit: E. Edwards)
The simulation of the quantum spin-liquid was performed on a flat honeycomb structure, where the electrons show a dynamical phase lacking any order. (Credit: Image courtesy of University of Stuttgart)

As the sizes of electronic components shrink, soon down to the size of single atoms or molecules, quantum interactions become ever more important. Consequently, enhanced knowledge and exploitation of quantum effects is essential. Researchers at the Joint Quantum Institute (JQI) in College Park, Maryland, operated by the University of Maryland and the National Institute of Standards and Technology (NIST), and at Georgetown University have uncovered evidence for a long-sought-after quantum state of matter, a spin liquid (more on quantum spin-liquid see this article).
The research was performed by JQI postdoctoral scientists Christopher Varney and Kai Sun, JQI Fellow Victor Galitski, and Marcos Rigol of Georgetown University. The results appear in an editor-recommended article in the 12 August issue of the journalPhysical Review Letters.

You can't pour a spin liquid into a glass. It's not a material at all, at least not a material you can touch. It is more like a kind of magnetic disorder within an ordered array of atoms. Nevertheless, it has many physicists excited.
To understand this exotic state of matter, first consider the concept of spin, which is at the heart of all magnetic phenomena. For instance, a refrigerator magnet, at the microscopic level, consists of trillions of trillions of iron atoms all lined up. Each of these atoms can be thought of loosely as a tiny spinning ball. The orientation of that spin is what makes the atom into a tiny magnet. The refrigerator magnet is an example of a ferromagnet, the ferro part coming from the Latin word for iron. In a ferromagnet, all the atomic spins are lined up in the same way, producing a large cooperative magnetic effect.
Important though they may be, ferromagnets aren't the only kind of material where magnetic interactions between spins are critical. In anti-ferromagnets, for instance, the neighboring spins are driven to be anti-aligned. That is, the orientations of the spins alternate up and down (see top picture in figure). The accumulative magnetic effect of all these up and down spins is that the material has no net magnetism. The high-temperature superconducting materials discovered in the 1980s are an important example of an anti-ferromagnetic structure.
More complicated and potentially interesting magnetic arrangements are possible, which may lead to a quantum spin liquid. Imagine an equilateral triangle, with an atom (spin) at each corner. Anti-ferromagnetism in such a geometry would meet with difficulties. Suppose that one spin points up while a second spin points down. So far, so good. But what spin orientation can the third atom take? It can't simultaneously anti-align with both of the other atoms in the triangle. Physicists employ the word "frustration" to describe this baffling condition where all demands cannot be satisfied. Read more to learn how physicist address this 'frustration' in this review from which this post is created.


No comments:

Post a Comment